Tempering our expectations for bigdata in healthcare

Expectations around bigdata’s impact on healthcare is leaping ahead of reality and some good thoughts are being expressed. However, healthcare has already had significant amounts of analytics applied to it. The issue is not that larger sets of data are critical, but that the sharing and integration of the data are the critical parts for better analysis. Bigdata does not necessarily solve these problems although the bigdata fever may help smash through these barriers. Over 15 Blues and most of the major nationals have already purchased data warehouse appliances and advanced systems to speed-up analysis, so its not necessarily performance or scalability that is constraining advances built on data-driven approaches. And just using unstructured text in analytics will not create a leapfrog in better outcomes from data.

We really need to think integration and access. More people performing analysis in clever ways will make a difference. And this means more people than just the few that can access healthcare detailed data: most of which is proprietary and will stay proprietary to companies that collect it. Privacy and other issues prevent widespread sharing of the granular data needed to truly perform analysis and get great results…its a journey.

This makes the PCORI announcements about yet another national data infrastructure (based on a distributed data model concept) and Obama’s directive to get more Medicare data into the world for innovation (see the 2013 Healthcare Datapooloza that just completed in Washington DC) that much more interesting. PCORI is really building a closed network of detailed data using a common data model and distributed analysis while CMS is being pushed to make datasets more available to entrepreneurs and innovators–a bit of the opposite in terms of “access.”

There are innovative ideas out there, in fact, there is no end to them. Bigdata is actually a set of fairly old ideas that are suddently becoming economic to implement. And there is serious lack of useful datasets that are widely available. The CMS datasets are often heavily massaged prior to release in order to conform to HIPAA rules e.g. you cannot provide detailed data at an individual level essentially despite what you think you are getting: just stripping off a name and address off a claim form is sufficient for satisfying HIPAA rules.

So its clear that to get great results, you probably have to follow the PCORI model, but then analysis is really restricted to just a few people who can access those datasets.

That’s not to say that if patients are willing to opt-in to programs that get their healthcare data out there, bigdata does not have alot to offer. Companies using bigdata technology on their proprietary datasets can make a difference and there are many useful ideas to economically go after using bigdata–many of which are fairly obvious and easy to prioritize. But there is not going to suddenly be a large community of people with new access to granular data that could be, and often is, the source of innovation. Let’s face it. Many healthcare companies have had advanced analytics and effectively no real budget constraints for many years and will continue to do so.  So the reason that analytics have not been created deployed more than today is unrelated to technology.

If bigdata hype can help executives get moving and actually innovate (its difficult for executives to innovate versus just react in healthcare) then that’s a good thing and getting momentum will most likely be the largest stimulus to innovation overall. That’s why change management is key when using analytics for healthcare.

Leave a Reply